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excludes the other, and they may be taken together in 
order to reduce the calculated nucleation field. 

In Sec. I, it was assumed that p*< 1 (for i= 1, 2), but 
from the equations (6) and (9) we can see that, if it is 
assumed pi> 1, the calculated nucleation field remains 
the same as plotted in Fig. 1 for the same value of p. 
This means that the exchange energy and the magnitude 
of the magnetization vector can be assumed to be larger 

1. INTRODUCTION AND GENERAL THEORY 

RECENT advances in the ability of experimental 
physicists to measure the nature of the singularity 

in various thermodynamics functions near the critical 
point have raised anew the question of the adequacy of 
the Heisenberg model of magnetism to describe real 
substances in the critical region.1 Studies by various 
authors2 have shown that in the analogous Ising model, 
the most precise method now known of determining the 
predictions of models of this sort is the analysis of the 
exact power-series expansions (in reciprocal tempera
ture, etc.) of the various thermodynamic functions. 
The major problem involved in extending the power 
series for the Heisenberg model has been the calculation 
of the traces of the spin operators involved. In this 
section of our paper we show how that step can be 

* Work supported in part by the U. S. Atomic Energy Com
mission. 

1 J. L. Gammel, W. Marshall, and L. Morgan, Proc. Roy. Soc. 
(London) A275, 257 (1963). 

2 See, e.g., G. A. Baker, Jr., Phys. Rev. 124, 768 (1961): 129, 
99 (1963); J. W. Essam and M. E. Fisher, J. Chem. Phys. 38, 802 
(1963); M. F. Sykes and M. E. Fisher, Physica 28, 919, 939 
(1962); M. F. Sykes and C. Domb, J. Math. Phys. 2, 52, 63 
(1961). 

in the surface layer than in the bulk and still the calcu
lated nucleation field is lower. 
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greatly simplified and easily adapted for a computer. 
In the last section of our paper we will apply our 
method, as an example, to the linear Heisenberg model, 
and analyze, by means of the Pade approximant 
method, the energy and magnetic susceptibility. We 
digress in the second section to introduce the concept 
of the 2-point Pade approximant, which turns out to be 
extremely useful in discussing the linear ferromagnetic 
Heisenberg model. 

Domb3 has pointed out that the partition function of 
an infinite lattice can be simply expressed in terms of 
the partition functions for finite clusters. That this 
procedure is possible follows from the fact that the 
logarithm of the partition function for a general lattice 
can be written in the form 

lnZ^=Z«paU)<P«, (1.1) 

where a denotes a connected graph, pa^ is the number 
of distinct ways it occurs on lattice (j), and <pa is a 
unique function associated with graph a. By applying 
(1.1) successively to various finite clusters we may solve 
for the cpa's, and then, knowing the lattice constants 

3 C. Domb, Phil. Mag. Suppl. 9, 149 (1960), p. 330. 
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for an infinite lattice, obtain an expression for its 
partition function in terms of the <pa's. Since <pa is 
proportional to i£ '+ x , where I is the number of lines 
in a, and \ > 0 , we may exhaustively catalog all the 
a's required to obtain the expansion of the partition 
function to a given power of K. 

Normally, using the finite cluster method, one is con
fronted with the problem of taking the traces of powers 
of 2 ^ X 2 ^ matrices, where N is the number of spins in 
the cluster. For 10th order, open, connected configura
tions N can be 11 and so we get 2048X2048 matrices. 
Since the labor in computing a power of a matrix is 
proportional to the cube of its order, we get agout 1010 

operations per power, a formidable task even for the 
fastest computers available today. We can simplify 
the task in the following way: The Hamiltonian is 

$=-hJ E *<'«i-(f*B) E *.<> (1.2) 
nearest cluster 

neighbors 

where the <y* are the vectors of Pauli spin matrices asso
ciated with site i. The partition function is 

Z(/3,#) = T r [ e x p ( - / 3 £ ) ] . (1.3) 

As the parts of the Hamiltonian represented by the 
first and second sum commute, they must be simultane
ously diagonalizable. The subspaces in which the 
second sum has degenerate eigenvalues are very simple. 
They are spanned by the (i£) vectors with m spins down 
and all other spins up. Hence, the entire Hamiltonian 
(and all powers of it) must be decomposable into block 
matrices of dimension at most (™). For the 11 spin case, 
the order of the largest block is now reduced from 2048 
to 462. 

A further comparable reduction in block size is 
possible on the basis of the following observation. The 
Dirac relation, 

bi-v^lPij-I, (1.4) 

tells us that (vi'Vj), even in a 2048X2048 representa
tion, is a linear combination of the permutation operator 
Pij and the identity operator 7. By the well-known 
results of group theory, any representation of the 
symmetric group may be broken down into irreducible 
representations of the symmetric group. Following the 
analysis of Wigner4 we can easily break down the 
representation into its proper irreducible components. 
If A(k) (R) is the submatrix with all but k spins up, which 
represents permutation R, then the corresponding 
eigenvalue of YL&zi is (N—2k). Furthermore, according 
to Wigner,3 this representation is reducible as 

A<*> (R) = A ^ > (#)+#<*> (R) , (1.5) 

where k<N/2, and Dik) (R) is an irreducible representa
tion of R of dimension (^) — (fc-i)» an-d (?) is the usual 

4 E. P. Wigner, Group Theory and its Application to the Quantum 
Mechanics of Atomic Spectra, translated by J. J. Griffin (Academic 
Press Inc., New York, 1959), Chap. 13. 

binomial coefficient. For k>%N, A(N~k)(R) is related by 
a similarity transform to A(k)(R). Thus, due to the 
repetition of the D(k)(R)> the maximum block size is 
reduced (for N—ll to 165) and there are the same 
number of representations as before this reduction was 
performed. The partitition function, (1.3), for a finite 
cluster is given exactly by 

L=0 

(WY 
L\ 

vrm 
£ Tr(r^) 

N—k 
X £ e(N-2m)0fiH 

m=k 
(1.6) 

where Tk is the matrix representative of ^cluster (2P**i 
—I) in the &th irreducible representation, [ ] denotes 
the greatest integer, and Tr(X) is the trace or character 
of X. These irreducible representations, in the Young 
tableaux description, are those irreducible representa
tions with at most two horizontal rows and contain 
exactly k squares in the second row. As the matrix 
representatives for permutations on N items are easily 
constructed in terms of those for N— 1 and N— 2 items 
by following the standard prescription,5 we will not 
belabor it here. The special case of (1.6) for H=0, 

L=0 

(W) •PJ)"\ 

L\ 1 
[iV/2] 

k=0 
•2ft+l) (1.7) 

has been given previously by Wood and Pirnie.6 

2. TWO-POINT PADE APPROXIMANT 

The Pade approximant [M,N^[ is the ratio of two 
polynomials PN(Z)/QM(Z) of degrees N and M. The 
coefficients are chosen so that the power-series expan
sion of the quotient agrees with that of the function 
through the term zM+N. These approximants have 
proven powerful in the inference of quantitative infor
mation from power-series coefficients and from qualita
tive information about the analytic structure of the 
function.7 

Sometimes it happens that one has information about 
a function at two (or more) points. We propose to take 
it into account by requiring the Pade approximent to 
satisfy exactly the condition at the second point as 
well as those at the first, which is the origin. In the 
examples we will discuss, we impose the value of the 
function at infinity on the [N,N2 Pade approximants. 
The required modification in the linear equations which 
determine the coefficients of P and Q is slight. One 
replaces the equation, which makes the last power-

5 See, for instance, M. Hamermesh, Group Theory and its Appli
cation to Physical Problems (Addison-Wesley Publishing Company, 
Inc., Reading, Massachusetts, 1962), Chap. 7, especially Sec. 
7.7. 

6 P. J. Wood and K. Pirnie (private communication). 
7 See the papers of Ref. 2 and the works referred to therein for a 

fuller discussion of the Pade approximant method. 
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series term agree, by one which makes the Pade ap-
proximant equal to a given value at infinity. We have 
run a few cases to illustrate the nature of the results 
which might be obtained and to indicate what may 
and may not reasonably be expected of this method. 
We have considered 

a{x) = l — exp( — x), 

«(jr)=(l+^1/2/(l+«), 

c(x)=z(i+x+x2y/2~ii/x. 
The standard pV,A] Pade approximants do not con
verge to a(oo)7

8 because infinity is an essential singu
larity, but oscillate 0, 2, 0, 2, 0, • •, indefinitely. When 
the value a(oo) = 1.0 is fixed, then the £N,N~] Pade 
approximants converge rapidly. The [7,7] gives a(5) 
to one part in 105 and more accurately for smaller real 
arguments. The most inaccurate region is for large but 
not infinite arguments where there can occur errors of 
about one percent. This represents a substantial im
provement in the large argument region over the stand
ard Pade approximant as pointed out above. In this 
example we have used the two-point method to specify 
the value at an essential singularity. 

For the function uix) the point at infinity lies on the 
branch cut8 connecting the two branch points at 
zbi, when we use the cut convention defined by the 
[N,NJi Pade approximants. Continuing from positive 
or negative real values of x, we get + 1 and — 1, re
spectively, for w(oo). When we specify + 1 as the 
asymptotic value, all the poles and zeros by which the 
[iV,iV] Pade approximants simulate a branch cut lie 
in the left-half plane. u{\) is given by the [8,8] approxi
mant to better than one part in 106 and for smaller 
real positive arguments the accuracy is better. For 
larger arguments the accuracy decreases to about two 
percent in the range 1 0 < x < 3 0 and, of course, then 
increases to zero error at x= GO . 

If we specify ^(oo) = — 1 ? then all the poles and zeros 
simulating the branch cut are in the right-half plane. 
If we now consider negative real values of x, the 
accuracy picture is much the same as it was for the 
positive case of u(x). The pole at x= — 1 is located to 
within 3 parts in 106 by the [8,8] approximant. The 
maximum error is about 3 % here. For the function 
u(x) we have used the two-point method to specify 
which lip of a branch cut for the approximant to 
converge to. 

The function c(x) has branch points at x= — \ 
zki\/%. The standard Pade approximant would cut8 this 
function so as to connect these branch points and form a 
single-valued function. The branch cut would cross 
the real axis at x=~2. If we continue through this 
cut along the negative real axis, we obtain c(— °o) = 
— 1. If we continue along the positive real axis, we 

8 G. A. Baker, Jr., J. L. Gammel, and J. G. Wills, J. Math. 
Analysis App. 2, 405 (1961). 

obtain c(+ <*>) = + 1, the branch given by the standard 
[_N,N~] Pade approximants. When we fix the value 
c(oo) = 1, we specify the value at a regular point and do 
not much perturb the structure of the approximants, 
except to greatly accelerate convergence in the neigh
borhood of that regular point. The [5,5] for this case is 
good to better than one part in 104 for all positive real x. 

When we specified c( <x>) = — l i n a n effort to cause the 
[N,N2 Pade approximants to choose the other branch 
in the region of large negative x, we were not especially 
successful. Although through the [2,2] Pade approxi
mant, it appeared as though the desired branch was 
being taken, as we went to higher approximants the 
branch cut was made in the same general way as 
before and, in fact, the [5,5] Pade approximant does 
not become negative until \x\ > 170. We see from this 
example that specification at a regular point works 
very well, but that specifying the value alone, does not 
cause the [iV^iV] Pade approximants to change their 
"natural" Riemann sheet. I t may be that with a more 
nearly balanced ratio between coefficients given at zero 
and infinity one could force a change of what is the 
"natural" Riemann sheet, but we have not investigated 
this point. 

3. THE LINEAR HEISENBERG MODEL 

In order to illustrate our method we have obtained an 
expression from which one can calculate the series 
expansion for the linear Heisenberg model through the 
tenth order in K—\$J and all orders in H — finH. For 
H=0 we obtain the 21st order in K. The counting 
problem is elementary here. If U) denotes a linear chain 
of j links then the pa

U) of Eq. (1.1) become 

PJ»=j+l-a, a<j (3.1) 

= 0, a>j 

and for the infinite linear model 

lim [ lnZ^) /7V]= £ <pa. (3.2) 

If we know the exact partition functions for finite 
clusters through ten links, then we obtain 

10 

£ ^«=lnZ^)-lnZW. (3.3) 
a=l 

The <pa for the linear graphs are unusual in that they are 
proportional to (K)2a rather than Ka as are, for ex
ample, the <p's associated with simple closed polygons. 
This means that the first ten (pa'$ suffice to give 21 
terms in the zero-field expansion of the partition func
tion. In a nonzero magnetic field the <pa are again pro
portional to Ka and in particular we can only obtain 
the magnetic susceptibility through K10 from ten 
<pa$. The proof of this unusual property of the linear 
clusters is easily given. If we stop at the w-point chain, 
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TABLE I. Tr(Tk
L). 

A1275 

Z,\ k = 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0 

1 
9 
81 
729 
6561 

59 049 
531 441 
4782 969 

43 046 721 
387 420 489 
3486 784 401 

1 
10 
100 
1000 

10 000 
100 000 
1000 000 

10 000 000 
100 000 000 
1000 000 000 

10 000 000 000 

1 

9 
45 
289 
2085 

15 929 
125 725 
1013 329 
8287 765 

68 522 089 
571285 005 
4794 694 529 

10 
60 
432 
3456 

29 312 
257 280 
2308 224 

21024 000 
193 626 112 
1798 447 104 

16 817 027 072 

2 
(i-9) 
35 
63 
651 
2919 

26 355 
158 223 
1340 763 
9275 959 

76 729 795 
573 903 327 
4716 628 011 

(i=io) 
44 
120 
1008 
6240 

52 160 
401280 
3408 384 

28 511232 
247 929 856 
2162 104 320 

19 202 244 608 

3 

75 
-45 
1755 

-4605 
99 435 

-506 445 
7915 515 

-58 431005 
773 505 163 

-7029 326 445 
85 971909 915 

110 
20 

2576 
-640 

139 136 
-190 720 
10 037 120 

-29 383936 
857 096 192 

-3964 248 064 
82 144 987 136 

4 

90 
-198 
3034 

-21414 
293 210 

-3172 358 
43 207 642 

-557 643 494 
7814 375 002 

-109 145 995 590 
1575 964 920 794 

165 
-270 
5364 

-30 840 
486 224 

-4666 080 
67 609 920 

-822 459 264 
11798 357 248 

-160 690 048 512 
2342 240 605 183 

5 

42 
-126 
1722 

-15 246 
210 762 

-2697 246 
39 837 402 

-592 359 726 
9273 490 026 

-147 414 544 830 
2393 875 707 642 

132 
-360 
5472 

-46 080 
677 120 

-8578 560 
131 632 896 

-1986 734 592 
32 177 373 184 

-527 081914 368 
8898 064 781 309 

we are omitting Brout graphs from the free-energy 
expansion for which the basic graphs9 are chains of n or 
more links. Thus, the first error in the series arises from 
Brout graphs based on the basic graph in Fig. 1. But 
the first such nonvanishing Brout graph is shown in 
Fig. 2, and has 2n links. This is because, associated with 
any Brout graph is the corresponding cumulant, and 
any cumulant is the sum of products of moments of 
subgraphs (partitions of the lines in the Brout graph). 
However, the moment of any such graph having an 
undoubled link vanishes.10 

For a nonzero magnetic field, the partition function 

per site is given through tenth order in K by 

lim [ Z . w famy*- ; ~+0(K"), (3.4) 
"-80 Ziom(P,H) 

where Z^})(l3yH) is the expansion through feth order 
given by Eq. (1.6) of the partition function of a cluster 
of length j . We have tabulated in Table I the traces 
needed to evaluate Eq. (3.4). We have derived from 
Z2i

(10) and Z2i
(9) the following terms in the series ex

pansion for the free energy per site for an infinite 
lattice. It is 

- 4 4 016257/(70+204 0482^/(80+8261 760i£9/(9!)-128 4 22 272#10/(10!)-1816 480 512Kn/(lV) 
+7656 2054 400i^V(120+1.24207469568X1011Z13/(13!)-5.1042832542X1013Z1V(14!)+5.8068671970 
X1014i?V(150+3.6632422458X1016irl6/(16!)-1.14118428294X1018Z17/(17!)-2.3612862501 
XIO19^18/ (18. !)+l. 881307595X1021Z19/(19!)+2.53020316X1020iC20/(20!)-3.04552721 
X1024iT7(211)+- • •+52B+^-8^3 /(30+4OiT4 /(40+336ZV(5!)-6384#6 /(6!)--l() 240iT/(7!) 

+ 1461 888Z8/(8!)-9566 720#9/(9!)-434 804 480i£10/(10!)+ • • • ] . (3.5) 

These results agree with those published previously by 
one of us,10 and also with those published by Domb3 

and Wood11 through K9H° and K8H2. 
We have used the standard Pade approximant 

method2 to analyze the magnetic susceptibility. First, 

FIG. 1. Basic graph. (n LINKS) 

9 G. S. Rushbrooke, J. Math. Phys. 5, 1106 (1964). 
10 G. S. Rushbrooke and P. J. Wood, Mol. Phys. 1, 257 (1958), 

theorems II I and IV. 
11 C. Domb and D, W. Wood, Phys. Letters 8, 20 (1964). 

to determine the nature of the singularity at K= oo 
( r=0) we have computed the ZN,N+j2 Pade 
approximants fory=—l,0,+ l to [d(ln%)/dK2, where 
X=Xo/#ju2 is the reduced susceptibility. In Fig. 3 we 
have plotted from the £N,N— 1] Pade approximants 
the values of K[dQxL%)/dlC]. The limit as K tends to 
infinity is the power of the reduced magnetic suscepti-

12ft LINKS) O O O O O 
FIG. 2. First nonvanishing Brout graph based on the 

basic graph of Fig. 1. 
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FIG. 3. K[d\nx 
/dK2 versus K based 
on the [ # , i V - 1 ] 
Pade" approximants. 

bility singularity. The £N,N—1~] were used to obtain 
the correct asymptotic behavior. The other values of j 
tend to confirm this curve, and seem to rule out here 
the exponential behavior which the linear Ising model 
shows. As can be seen from Fig. 3 the N odd approxi
mants uniformly decrease and the N even uniformly 
increase. As the values at infinity are 

[2,1]=0.1428, 

[3,2]=6.9735, 

[4,3] = 0.3627, 

[5,4] = 0.7438. 

(3.6) 

We estimate, with the aid of Fig. 3, that the limit is 
(I) ±0.1. Since the [4,3] rises above 0.5 and the con
verged portion of the curve shown in Fig. 3 is mono tonic, 
we have selected f as the simplest fraction in the 
allowed range. Using this hypothesis we have calculated 

o.o 

-2.0 

FIG. 4. E(K) Teased on the [9,9] two-point Pade approximants. 
The plus side is the ferromagnetic case and the minus side is the 
antiferromagnetic case. The asymptotic limits are indicated by the 
large tic marks. E is measured in units of f/. 

the [iV,7V+l] approximants to [x{K)Ji\ as i%(K)Ji* 
should diverge linearly as K—> <x>. The limit of 
L%(K)1ZI2/K a s given by these approximants as K 
goes to infinity is the coefficient of the singularity. The 
values obtained are 

[1,2] = 3.5, 

[2,3] = 2.4424, 

[3,4] = 3.4158, (3.7) 

[4,5] = 3.0686. 

These results lead us to speculate that 

2C«M02/8, (3.8) 
as K tends to infinity. We wish to emphasize, however, 
that there must be considered to be about a ten percent 
error in the coefficient and the power. The error of the 
[4,5] approximant is apparently less than one percent at 

0.50 

\ 0.25 i 

0.001 

kT/M 

FIG. 5. Specific heat based on the [11,10] Pade approximant for 
the ferromagnetic and the antiferromagnetic cases. 

K= 1, and is probably no more than ten percent off at 
K= oo. The closest nonphysical singularities are at 
about K=— 0.11db0.47?. The approximation to £ 
based on the [4,5] is 

2cW«[(l+5.7979916X+16.9026532P 
+29.376885iT3+ 29.832959i£4 

+ 14.036918i£5H (l+2.7979916ir 
+7.0086780Z2+8.6538644Z'3+ 

4.5743114Z4)]2/3. (3.9) 

Since the energy is known12 to tend to a finite limit as 
K tends to infinity and the values are known12 to be 

lim E{K)= 1, 
K-H-oo 

lim £CK) = - 4 m 2 + l , 
K-+—oo 

we have used the two-point Pade approximant method 
introduced in the previous section to analyze the energy. 
For the ferromagnetic case we have an error in the 

12 H. A. Bethe, Z. Physik 71, 205 (1931); with A. Sommerfeld, 
Handbuch der Physik, edited by S. Fliigge (Springer-Verlag, Ber
lin, 1933), Vol. 24, part 2, p. 618. 
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[9.9] of less than one part in 104 at i£= 1 and less than 
half a percent for i£=2 at which point the value is 
95% of the asymptotic value. Loss of calculational 
accuracy in the 20th coefficient prevents us from using 
the [10,10] where only about three places remain in the 
solution. When the standard Pade (one-point) approxi-
mant method is used, we may estimate E for K= <*> to 
about 10% by averaging the twenty percent amplitude 
oscillation at K= oo. The oscillation occurs because 
K= co is an essential singularity. For K< oo agreement 
is rapidly obtained with the two-point method. It 
should be noted that the signs of the energy series are 
periodic with period 7, a rather long period. Conse
quently, a fairly large number of terms are required to 
obtain accurate results. The radius of convergence of 
the power series is about 0.5, the nearest singularities 
being located at about — 0.11±0.47i, the same place 
as for the reduced susceptibility. Unfortunately, the 
antiferromagnetic case is quite similar to the function 
c{%) discussed in Sec. 2. There is again a cut which 
crosses the negative real axis in the neighborhood of 

I. INTRODUCTION 

NUCLEAR magnetic resonance (NMR) tech
niques in antiferromagnetic media provide a 

convenient method for obtaining information about the 
thermodynamic properties of these ordered spin sys
tems. In particular, information concerning the zero-
point spin-deviation, temperature dependence of the 
sublattice magnetization, and indirect nuclear spin 
interactions are readily obtained from NMR measure
ments.1 MnF2 is a particularly well-suited crystal for 

1 For a review of NMR in antiferromagnetic media the reader is 
referred to the article by V. Jaccarino, in Magnetism, edited by H. 
Suhl and G. Rado (Academic Press Inc., New York, 1964). 

— 2. We do, however, obtain the value at K=— 1 to 
better than 3% accuracy and it is again about 95% of 
the asymptotic value for K— — oo. In Fig. 4 we have 
plotted our results for the energy as a function of K. 

We have compared our results with those obtained 
by Katsura and Inawashiro13 on the basis of an expan
sion through second order in Jn with Jx summed to all 
orders. The agreement for the antiferromagnetic energy 
is good. There is a deviation reaching about 6% in the 
range i£=0.2 to 0.5. For the ferromagnetic energy the 
agreement is good for K=0 to 0.3 but starting around 
i£=0.3 there is a large kink in their results which 
causes them to be off by about 20% near K= 1 although 
their error drops to only 3% at K= oo. Their ferro
magnetic susceptibility agrees nicely with ours for 
K=0 to about 0.5 where theirs falls below ours due to 
the finiteness implicit in their approximation. In Fig. 5 
we have plotted the specific heat at zero magnetic 
field as far as we believed our results to be reliable. 

13 S. Katsura and S. Inawashiro (private communication). 

studying the properties of antiferromagnetic spin 
systems since the Mn2+ ion is an 5-state ion (5=5/2) 
and therefore the anisotropy field results mainly from 
the dipolar interaction. MnF2 has the rutile structure 
with tetragonal symmetry and in the antiferromagnetic 
state the Mn2+ ions are ordered such as to consist of 
two interpenetrating sublattices with oppositely ord
ered spins. 

An estimate of the zero-point spin deviation {S)/S 
for MnF2 has been given by Clogston et al? by making a 
comparison of the electron paramagnetic resonance 
(EPR) measurements of Mn2+ in ZnF2 with the specific 

2 A. M. Clogston, J. P. Gordon, V. Jaccarino, M. Peter, and L. 
R. Walker, Phys. Rev. 117, 1222 (1960). 
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The zero-field NMR of Mn55 has been observed directly in the antiferromagnetic state of MnF2. A single 
resonance, with linewidth Ap65~1.3 Mc/sec, was observed in the frequency range of 650-675 Mc/sec and 
the temperature range of 1.3-20.5°K. The extrapolated Mn55 NMR frequency at 0°K is found to be J>O66 

= 671.4=1=0.2 Mc/sec. Combining the 0°K Mn55 NMR frequency together with the dipolar field iJdip 
= +5.770 kOe and the hyperfine coupling constant A55= - (90.78=±=0.3)X10~4 cm"1, measured for Mn2+ in 
ZnF2, gives a value for the zero-point spin deviation of 1 — (S)/S= (0.43=h0.34)%. This value is to be com
pared with the value predicted by spin-wave theory of 2.37%. The observed temperature dependence of the 
Mn55 NMR frequency agrees, within experimental error, with the temperature dependence of the F19 zero-
field NMR in antiferromagnetic MnF2. Upper and lower limits of 1300 kc/sec and 600 kc/sec are placed on 
the contribution to the Mn65 NMR linewidth in antiferromagnetic MnF2 by the Suhl-Nakamura interaction. 


